Pytorch实现ResNet

示例代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/9/14 21:57
# @Author : Seven
# @Site :
# @File : ResNet.py
# @Software: PyCharm
import torch.nn as nn
import torch.nn.functional as F


class BasicBlock(nn.Module):
growth = 1

def __init__(self, inputs, outs, stride=1):
super(BasicBlock, self).__init__()
self.left = nn.Sequential(
nn.Conv2d(inputs, outs, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(outs),
nn.ReLU(),
nn.Conv2d(outs, outs, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(outs)
)

self.shortcut = nn.Sequential()
if stride != 1 or inputs != outs:
self.shortcut = nn.Sequential(
nn.Conv2d(inputs, outs, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outs)
)

def forward(self, inputs):
network = self.left(inputs)
network += self.shortcut(inputs)
out = F.relu(network)
return out


class UpgradeBlock(nn.Module):
growth = 4

def __init__(self, inputs, outs, stride=1):
super(UpgradeBlock, self).__init__()
self.left = nn.Sequential(
nn.Conv2d(inputs, outs, kernel_size=1, bias=False),
nn.BatchNorm2d(outs),
nn.ReLU(),
nn.Conv2d(outs, outs, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(outs),
nn.ReLU(),
nn.Conv2d(outs, self.growth*outs, kernel_size=1, bias=False),
nn.BatchNorm2d(self.growth*outs)
)

self.shortcut = nn.Sequential()
if stride != 1 or inputs != self.growth * outs:
self.shortcut = nn.Sequential(
nn.Conv2d(inputs, self.growth * outs, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.growth * outs)
)

def forward(self, inputs):
network = self.left(inputs)
network += self.shortcut(inputs)
out = F.relu(network)
return out


class ResNet(nn.Module):
def __init__(self, block, layers):
super(ResNet, self).__init__()
self.inputs = 64
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, stride=1, bias=False),
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU()
)
self.conv2 = self._block(block, layers=layers[0], channels=64, stride=1)
self.conv3 = self._block(block, layers=layers[1], channels=128, stride=2)
self.conv4 = self._block(block, layers=layers[2], channels=256, stride=2)
self.conv5 = self._block(block, layers=layers[3], channels=512, stride=2)

self.linear = nn.Linear(512*block.growth, 10)

def forward(self, inputs):
network = self.conv1(inputs)
network = self.conv2(network)
network = self.conv3(network)
network = self.conv4(network)
network = self.conv5(network)
network = F.avg_pool2d(network, kernel_size=network.shape[2])
network = network.view(network.size(0), -1)
out = self.linear(network)

return out, network

def _block(self, block, layers, channels, stride):
strides = [stride] + [1] * (layers - 1) # strides=[1,1]
layers = []
for stride in strides:
layers.append(block(self.inputs, channels, stride))
self.inputs = channels*block.growth
return nn.Sequential(*layers)


def ResNet18():
return ResNet(block=BasicBlock, layers=[2, 2, 2, 2])


def ResNet34():
return ResNet(block=BasicBlock, layers=[3, 4, 6, 3])


def ResNet50():
return ResNet(UpgradeBlock, [3, 4, 6, 3])


def ResNet101():
return ResNet(UpgradeBlock, [3, 4, 23, 3])


def ResNet152():
return ResNet(UpgradeBlock, [3, 8, 36, 3])

转载请注明:Seven的博客

本文标题:Pytorch实现ResNet

文章作者:Seven

发布时间:2018年09月15日 - 00:00:00

最后更新:2018年12月11日 - 22:15:48

原始链接:http://yoursite.com/2018/09/15/2018-09-15-Pytorch-ResNet/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

------ 本文结束------
坚持原创技术分享,您的支持将鼓励我继续创作!
0%