Pytorch实现LeNet

示例代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/9/13 20:26
# @Author : Seven
# @Site :
# @File : LeNet.py
# @Software: PyCharm
import torch.nn as nn

class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
# 32*32*3 --28*28*6--> 14*14*6
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3,
out_channels=6,
kernel_size=5,
stride=1,
padding=0),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
)
# 14*14*6 --10*10*16--> 5*5*16
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=6,
out_channels=16,
kernel_size=5,
stride=1,
padding=0),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),
)
# 5*5*16 --> 120
self.fc1 = nn.Sequential(
nn.Linear(5 * 5 * 16, 120),
nn.ReLU(),
nn.Dropout(p=0.8)
)

# 120 --> 84
self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.ReLU(),
nn.Dropout(p=0.8)
)
# 84 --> 10
self.out = nn.Linear(84, 10)

def forward(self, inputs):
network = self.conv1(inputs)
network = self.conv2(network)
network = network.view(network.size(0), -1)
network = self.fc1(network)
network = self.fc2(network)
out = self.out(network)
return out, network

转载请注明:Seven的博客

本文标题:Pytorch实现LeNet

文章作者:Seven

发布时间:2018年09月15日 - 00:00:00

最后更新:2018年12月11日 - 22:15:36

原始链接:http://yoursite.com/2018/09/15/2018-09-15-Pytorch-LeNet/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

------ 本文结束------
坚持原创技术分享,您的支持将鼓励我继续创作!
0%