TensorFlow实现深度卷积生成对抗网络-DCGAN

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/9/4 16:29
# @Author : Seven
# @Site :
# @File : DCGAN.py
# @Software: PyCharm

# TODO: 导入环境
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

# TODO:数据准备
mnist = input_data.read_data_sets('data')


# TODO:获得输入数据
def get_inputs(noise_dim, image_height, image_width, image_depth):
# 真实数据
inputs_real = tf.placeholder(tf.float32, [None, image_height, image_width, image_depth], name='inputs_real')
# 噪声数据
inputs_noise = tf.placeholder(tf.float32, [None, noise_dim], name='inputs_noise')

return inputs_real, inputs_noise


# TODO:生成器
def get_generator(noise_img, output_dim, is_train=True, alpha=0.01):
with tf.variable_scope("generator", reuse=(not is_train)):
# 100 x 1 to 4 x 4 x 512
# 全连接层
layer1 = tf.layers.dense(noise_img, 4 * 4 * 512)
layer1 = tf.reshape(layer1, [-1, 4, 4, 512])
# batch normalization
layer1 = tf.layers.batch_normalization(layer1, training=is_train)
# Leaky ReLU
layer1 = tf.maximum(alpha * layer1, layer1)
# dropout
layer1 = tf.nn.dropout(layer1, keep_prob=0.8)

# 4 x 4 x 512 to 7 x 7 x 256
layer2 = tf.layers.conv2d_transpose(layer1, 256, 4, strides=1, padding='valid')
layer2 = tf.layers.batch_normalization(layer2, training=is_train)
layer2 = tf.maximum(alpha * layer2, layer2)
layer2 = tf.nn.dropout(layer2, keep_prob=0.8)

# 7 x 7 256 to 14 x 14 x 128
layer3 = tf.layers.conv2d_transpose(layer2, 128, 3, strides=2, padding='same')
layer3 = tf.layers.batch_normalization(layer3, training=is_train)
layer3 = tf.maximum(alpha * layer3, layer3)
layer3 = tf.nn.dropout(layer3, keep_prob=0.8)

# 14 x 14 x 128 to 28 x 28 x 1
logits = tf.layers.conv2d_transpose(layer3, output_dim, 3, strides=2, padding='same')
# MNIST原始数据集的像素范围在0-1,这里的生成图片范围为(-1,1)
# 因此在训练时,记住要把MNIST像素范围进行resize
outputs = tf.tanh(logits)

return outputs


# TODO:判别器
def get_discriminator(inputs_img, reuse=False, alpha=0.01):
with tf.variable_scope("discriminator", reuse=reuse):
# 28 x 28 x 1 to 14 x 14 x 128
# 第一层不加入BN
layer1 = tf.layers.conv2d(inputs_img, 128, 3, strides=2, padding='same')
layer1 = tf.maximum(alpha * layer1, layer1)
layer1 = tf.nn.dropout(layer1, keep_prob=0.8)

# 14 x 14 x 128 to 7 x 7 x 256
layer2 = tf.layers.conv2d(layer1, 256, 3, strides=2, padding='same')
layer2 = tf.layers.batch_normalization(layer2, training=True)
layer2 = tf.maximum(alpha * layer2, layer2)
layer2 = tf.nn.dropout(layer2, keep_prob=0.8)

# 7 x 7 x 256 to 4 x 4 x 512
layer3 = tf.layers.conv2d(layer2, 512, 3, strides=2, padding='same')
layer3 = tf.layers.batch_normalization(layer3, training=True)
layer3 = tf.maximum(alpha * layer3, layer3)
layer3 = tf.nn.dropout(layer3, keep_prob=0.8)

# 4 x 4 x 512 to 4*4*512 x 1
flatten = tf.reshape(layer3, (-1, 4 * 4 * 512))
logits = tf.layers.dense(flatten, 1)
outputs = tf.sigmoid(logits)

return logits, outputs


# TODO: 目标函数
def get_loss(inputs_real, inputs_noise, image_depth, smooth=0.1):
g_outputs = get_generator(inputs_noise, image_depth, is_train=True)
d_logits_real, d_outputs_real = get_discriminator(inputs_real)
d_logits_fake, d_outputs_fake = get_discriminator(g_outputs, reuse=True)

# 计算Loss
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.ones_like(d_outputs_fake) * (1 - smooth)))

d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
labels=tf.ones_like(d_outputs_real) * (
1 - smooth)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.zeros_like(d_outputs_fake)))
d_loss = tf.add(d_loss_real, d_loss_fake)

return g_loss, d_loss


# TODO:优化器
def get_optimizer(g_loss, d_loss, learning_rate=0.001):
train_vars = tf.trainable_variables()

g_vars = [var for var in train_vars if var.name.startswith("generator")]
d_vars = [var for var in train_vars if var.name.startswith("discriminator")]

# Optimizer
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
g_opt = tf.train.AdamOptimizer(learning_rate).minimize(g_loss, var_list=g_vars)
d_opt = tf.train.AdamOptimizer(learning_rate).minimize(d_loss, var_list=d_vars)

return g_opt, d_opt


# 显示图片
def plot_images(samples):
fig, axes = plt.subplots(nrows=5, ncols=5, sharex=True, sharey=True, figsize=(7, 7))
for img, ax in zip(samples, axes.flatten()):
ax.imshow(img.reshape((28, 28)), cmap='Greys_r')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
fig.tight_layout(pad=0)
plt.show()


def show_generator_output(sess, n_images, inputs_noise, output_dim):
noise_shape = inputs_noise.get_shape().as_list()[-1]
# 生成噪声图片
examples_noise = np.random.uniform(-1, 1, size=[n_images, noise_shape])

samples = sess.run(get_generator(inputs_noise, output_dim, False),
feed_dict={inputs_noise: examples_noise})

result = np.squeeze(samples, -1)
return result


# TODO:开始训练
# 定义参数
batch_size = 64
noise_size = 100
epochs = 5
n_samples = 25
learning_rate = 0.001


def train(noise_size, data_shape, batch_size, n_samples):
# 存储loss
losses = []
steps = 0

inputs_real, inputs_noise = get_inputs(noise_size, data_shape[1], data_shape[2], data_shape[3])
g_loss, d_loss = get_loss(inputs_real, inputs_noise, data_shape[-1])
print("FUNCTION READY!!")
g_train_opt, d_train_opt = get_optimizer(g_loss, d_loss, learning_rate)
print("TRAINING....")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 迭代epoch
for e in range(epochs):
for batch_i in range(mnist.train.num_examples // batch_size):
steps += 1
batch = mnist.train.next_batch(batch_size)

batch_images = batch[0].reshape((batch_size, data_shape[1], data_shape[2], data_shape[3]))
# scale to -1, 1
batch_images = batch_images * 2 - 1

# noise
batch_noise = np.random.uniform(-1, 1, size=(batch_size, noise_size))

# run optimizer
sess.run(g_train_opt, feed_dict={inputs_real: batch_images,
inputs_noise: batch_noise})
sess.run(d_train_opt, feed_dict={inputs_real: batch_images,
inputs_noise: batch_noise})

if steps % 101 == 0:
train_loss_d = d_loss.eval({inputs_real: batch_images,
inputs_noise: batch_noise})
train_loss_g = g_loss.eval({inputs_real: batch_images,
inputs_noise: batch_noise})
losses.append((train_loss_d, train_loss_g))
print("Epoch {}/{}....".format(e + 1, epochs),
"Discriminator Loss: {:.4f}....".format(train_loss_d),
"Generator Loss: {:.4f}....".format(train_loss_g))

if e % 1 == 0:
# 显示图片
samples = show_generator_output(sess, n_samples, inputs_noise, data_shape[-1])
plot_images(samples)


with tf.Graph().as_default():
train(noise_size, [-1, 28, 28, 1], batch_size, n_samples)
print("OPTIMIZER END!!")

执行结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Epoch 4/5.... Discriminator Loss: 0.4584.... Generator Loss: 4.8776....
Epoch 4/5.... Discriminator Loss: 0.4315.... Generator Loss: 2.9278....
Epoch 4/5.... Discriminator Loss: 0.5317.... Generator Loss: 3.4315....
Epoch 4/5.... Discriminator Loss: 0.6342.... Generator Loss: 2.7376....
Epoch 4/5.... Discriminator Loss: 0.4312.... Generator Loss: 3.9016....
Epoch 4/5.... Discriminator Loss: 0.5498.... Generator Loss: 2.3418....
Epoch 4/5.... Discriminator Loss: 0.4807.... Generator Loss: 3.4065....
Epoch 4/5.... Discriminator Loss: 0.5360.... Generator Loss: 2.2658....
Epoch 4/5.... Discriminator Loss: 0.4612.... Generator Loss: 2.8166....
Epoch 5/5.... Discriminator Loss: 0.4784.... Generator Loss: 2.9896....
Epoch 5/5.... Discriminator Loss: 0.7368.... Generator Loss: 2.1130....
Epoch 5/5.... Discriminator Loss: 0.4192.... Generator Loss: 3.9733....
Epoch 5/5.... Discriminator Loss: 0.4998.... Generator Loss: 2.1577....
Epoch 5/5.... Discriminator Loss: 0.4693.... Generator Loss: 3.1395....
Epoch 5/5.... Discriminator Loss: 0.3946.... Generator Loss: 4.0385....
Epoch 5/5.... Discriminator Loss: 0.4807.... Generator Loss: 3.8975....
Epoch 5/5.... Discriminator Loss: 0.4703.... Generator Loss: 3.6105....
OPTIMIZER END!!

生成的图像

images

转载请注明:Seven的博客

本文标题:TensorFlow实现深度卷积生成对抗网络-DCGAN

文章作者:Seven

发布时间:2018年09月04日 - 00:00:00

最后更新:2018年12月11日 - 22:11:58

原始链接:http://yoursite.com/2018/09/04/2018-09-04-TensorFlow-DCGAN/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

------ 本文结束------
坚持原创技术分享,您的支持将鼓励我继续创作!
0%