TensorFlow-Layer之CNN实现手写数字识别

TensorFlow四种写法之二:layer

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/8/22 21:01
# @Author : Seven
# @Site :
# @File : CNN-layers.py
# @Software: PyCharm

# 0.导入环境

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# 1.数据准备

# 使用tensorflow自带的工具加载MNIST手写数字集合
mnist = input_data.read_data_sets('data', one_hot=True)
# 查看数据的维度和target的维度
print(mnist.train.images.shape)
print(mnist.train.labels.shape)

# 2.准备好palceholder
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
learnRate = tf.placeholder(tf.float32)

# 3.构建网络计算图结构

# 把输入数据reshape--28x28=784, 单通道, -1表示None
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 构建第一层卷积计算层--将一个灰度图像映射到32个feature maps, 卷积核为5x5
with tf.name_scope('conv1'):
h_conv1 = tf.layers.conv2d(x_image, 32, [5, 5], padding='SAME', activation=tf.nn.relu)

# 构建池化层--采用最大池化
with tf.name_scope('pool1'):
h_pool1 = tf.layers.max_pooling2d(h_conv1, pool_size=[2, 2], strides=[2, 2], padding='VALID')


# 构建第二层卷积计算层--maps 32 feature maps to 64.
with tf.name_scope('conv2'):
h_conv2 = tf.layers.conv2d(h_pool1, 64, [5, 5], padding='SAME', activation=tf.nn.relu)

# 构建第二个池化层
with tf.name_scope('pool2'):
h_pool2 = tf.layers.max_pooling2d(h_conv2, pool_size=[2, 2], strides=[2, 2], padding='VALID')

# 构建全连接层--经过的两层的下采样(池化),28x28x1的图像-->7x7x64,然后映射到1024个特征
with tf.name_scope('fc1'):
h_pool2_flat = tf.layers.flatten(h_pool2)
h_fc1 = tf.layers.dense(h_pool2_flat, 1024, activation=tf.nn.relu)

# Dropout--防止过拟合
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc_drop = tf.nn.dropout(h_fc1, keep_prob=keep_prob)

# 构建全连接层--将1024个特性映射到10个类,每个类对应一个数字
with tf.name_scope('fc2'):
out = tf.layers.dense(h_fc_drop, 10, activation=None)

# 4.计算损失值并初始化optimizer
print(y.shape, out.shape)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=out))

l2_loss = tf.add_n([tf.nn.l2_loss(w) for w in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)])

total_loss = cross_entropy + 7e-5*l2_loss

train_step = tf.train.AdamOptimizer(learnRate).minimize(total_loss)
# 5.初始化变量
init = tf.global_variables_initializer()

# 6.在会话中执行网络定义的运算
with tf.Session() as sess:
sess.run(init)

for step in range(3000):
batch_xs, batch_ys = mnist.train.next_batch(100)
lr = 0.01

_, loss, l2_loss_value, total_loss_value = sess.run(
[train_step, cross_entropy, l2_loss, total_loss],
feed_dict={x: batch_xs, y: batch_ys, learnRate: lr, keep_prob: 0.5})

if (step+1) % 100 == 0:
print("step %d, entropy loss: %f, l2_loss: %f, total loss: %f" %
(step+1, loss, l2_loss_value, total_loss_value))

# 验证训练的模型
correct_prediction = tf.equal(tf.argmax(out, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Train accuracy:", sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob:0.5}))

if (step + 1) % 1000 == 0:
print("Text accuracy:", sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 0.5}))

转载请注明:Seven的博客

本文标题:TensorFlow-Layer之CNN实现手写数字识别

文章作者:Seven

发布时间:2018年08月27日 - 00:00:00

最后更新:2018年12月11日 - 22:09:12

原始链接:http://yoursite.com/2018/08/27/2018-08-27-TensorFlow-layer/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

------ 本文结束------
坚持原创技术分享,您的支持将鼓励我继续创作!
0%